Sains Malaysiana 53(10)(2024): 3487-3497
http://doi.org/10.17576/jsm-2024-5310-21
Automatic
Algorithm Applied for Calculating Thermal Conductivity by Transient Plane
Source Method
(Algoritma Automatik Digunakan untuk Menghitung Kekonduksian Terma melalui Kaedah Sumber Satah Fana)
ZHIJIE JIA1,2,
LIPING YANG2,3, CHENGCHENG CAO2, HUIDONG LI2,
CAIYUN LUO2, YE TAO2, QIU ZHONG2, ZIJUN XU2,
ZEZHONG CHEN1,*
1School of Materials Science and Engineering,
University of Shanghai for Science and Technology, Shanghai 200093, China
2Inorganic Materials Analysis and Testing
Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai
200050, China
3State Key Laboratory of High-Performance
Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese
Academy of Sciences, Shanghai 200050, China
Diserahkan: 14 Mac 2024/Diterima: 13 Ogos 2024
Abstract
As a thermal conductivity measurement method,
Transient Plane Source (TPS) method has gained much popularity because of its
broad applicability, short measurement times, high precision and simple sample
preparation. However, the accuracy of thermal
conductivity calculations based on temperature rise data is often hindered by
factors such as probe thickness, contact thermal resistance, and input power.
Currently, there is no standardized criteria for selecting effective
temperature rise data for thermal conductivity calculation. Consequently, the accuracy of results are limited by the operator's
understanding of the TPS methods, and repeatability of the results is often
poor. To address this issue, an automatic algorithm based on the international
standard (ISO22007-2:2008) is proposed in this paper. By applying this algorithm
to the measurement of different materials, it has been demonstrated that the
proposed algorithm can produce more precise and consistent results than the
conventional method. Additionally, the
integration of the time window function
, typically
utilized solely for result validation in conventional methods, further enhances
the objectivity and reproducibility of the results obtained by the automatic
algorithm.
Keywords: Linear regression analysis; thermal conductivity; the
effective measurement interval; transient plane source method
Abstrak
Sebagai kaedah pengukuran kekonduksian terma, kaedah Sumber Satah Fana (TPS) telah mendapat populariti kerana kebolehgunaannya yang luas, masa pengukuran yang singkat, ketepatan tinggi dan penyediaan sampel yang mudah. Walau bagaimanapun, ketepatan pengiraan kekonduksian terma berdasarkan data kenaikan suhu sering dihalang oleh faktor seperti ketebalan prob, rintangan terma sentuhan dan kuasa input. Pada masa ini, tiada kriteria piawai untuk memilih data kenaikan suhu yang berkesan untuk pengiraan kekonduksian terma. Akibatnya, ketepatan keputusan dihadkan oleh pemahaman pengendali tentang kaedah TPS, dan kebolehulangan keputusan selalunya lemah. Untuk menangani isu ini, algoritma automatik berdasarkan piawaian antarabangsa (ISO22007-2:2008) dicadangkan dalam kertas ini. Dengan menggunakan algoritma ini untuk pengukuran bahan yang berbeza, ia telah menunjukkan bahawa algoritma yang dicadangkan boleh menghasilkan keputusan yang lebih tepat dan tekal berbanding kaedah konvensional. Selain itu, penyepaduan fungsi tetingkap masa
, biasanya digunakan semata-mata untuk pengesahan keputusan dalam kaedah konvensional, meningkatkan lagi objektiviti dan kebolehulangan hasil yang diperoleh oleh algoritma automatik.
Kata kunci: Analisis regresi linear; kaedah sumber satah fana; kekonduksian terma; selang pengukuran berkesan
RUJUKAN
Ai, Q.,
Hu, Z-W., Liu, M., Xia, X-L. & Xie, M. 2016. Influence of sensor
orientations on the thermal conductivity measurements of liquids by transient
hot disk technique. Journal of Thermal
Analysis and Calorimetry 128: 289-300.
Almanza,
O., Rodríguez‐Pérez, M.A. & De Saja, J.A. 2004. Applicability of the
transient plane source method to measure the thermal conductivity of
low‐density polyethylene foams. Journal
of Polymer Science Part B: Polymer Physics 42(7): 1226-1234.
Assael,
M.J., Antoniadis, K.D. & Wakeham, W.A. 2010. Historical evolution of the
transient hot-wire technique. International
Journal of Thermophysics 31(6): 1051-1072.
Assael,
M.J., Antoniadis, K.D. & Tzetzis, D. 2008. The use of the transient
hot-wire technique for measurement of the thermal conductivity of an
epoxy-resin reinforced with glass fibres and/or carbon multi-walled nanotubes. Composites Science and Technology 68(15-16): 3178-3183.
Assael,
M.J., Dix, M., Gialou, K., Vozar, L. & Wakeham, W.A. 2002. Application of
the transient hot-wire technique to the measurement of the thermal conductivity
of solids. International Journal of
Thermophysics 23(3): 615-633.
Bohac,
V., Gustavsson, M.K., Kubicar, L. & Gustafsson, S.E. 2000. Parameter
estimations for measurements of thermal transport properties with the hot disk
thermal constants analyzer. Review of
Scientific Instruments 71(6): 2452-2455.
Cahill,
D.G. 1990. Thermal conductivity measurement from 30 to 750 K: the 3ω
method. Review of Scientific Instruments 61(2): 802-808.
Elkholy,
A., Sadek, H. & Kempers, R. 2019. An improved transient plane source
technique and methodology for measuring the thermal properties of anisotropic
materials. International Journal of
Thermal Sciences 135: 362-374.
Gustafsson,
S.E. 1991. Transient plane source techniques for thermal conductivity and
thermal diffusivity measurements of solid materials. Review of Scientific Instruments 62(3): 797-804.
Gustavsson,
M., Karawacki, E. & Gustafsson, S.E. 1994. Thermal conductivity, thermal
diffusivity, and specific heat of thin samples from transient measurements with
hot disk sensors. Review of Scientific
Instruments 65(12): 3856-3859.
Huang,
L-P. 2007. Verification of the measurement accuracy and the test range of
thermophysical properties of transient plane source (TPS) method. Journal of Astronautic Metrology 26(4):
25-29.
Huang,
L. & Liu, L-S. 2009. Simultaneous determination of thermal conductivity and
thermal diffusivity of food and agricultural materials using a transient
plane-source method. Journal of Food
Engineering 95(1): 179-185.
ISO
2008 Plastics - determination of thermal conductivity and thermal diffusivity -
Part 2: Transient plane heat source (hot disc) method ISO 22007-2 (Geneva:
ISO).
Kim,
K., Lee, J. & Koo, J. 2019. Automated thermal conductivity measurement
algorithm for the transient hot wire method. Journal of Mechanical Science and Technology 33(6): 3001-3009.
Li,
Y., Shi, C., Liu, J., Liu, E., Shao, J., Chen, Z., Dorantes-Gonzalez, D.J.
& Hu. X. 2014. Improving the accuracy of the transient plane source method
by correcting probe heat capacity and resistance influences. Measurement Science and Technology 25:
015006.
Lian,
T-W., Kondo, A., Akoshima, M., Abe, H., Ohmura, T., Tuan, W-H. & Naito, M.
2016. Rapid thermal conductivity measurement of porous thermal insulation
material by laser flash method. Advanced
Powder Technology 27(3): 882-885.
Ma,
A., Cai, C., Yang, J. & Zhou, T. 2021. Measuring thermophysical properties
of building insulation materials using transient plane heat source method. Energy and Buildings 240: 110819.
Malinarič,
S. & Dieška, P. 2015. Concentric circular strips model of the transient
plane source-sensor. International
Journal of Thermophysics 36(4): 692-700.
Mo,
S., Hu, P., Cao, J., Chen, Z., Fan, H. & Yu, F. 2006. Effective thermal
conductivity of moist porous sintered nickel material. International Journal of Thermophysics 27(1): 304-313.
Nagai,
H., Mamiya, M. & Okutani, T. 2007. Thermal conductivity measurement of molten indium
antimonide using hot-disk method in short-duration microgravity. Japanese Journal of Applied Physics 46(12): 7920-7924.
Wang,
H., Ihms, D.W., Brandenburg, S.D. & Salvador, J.R. 2019. Thermal
conductivity of thermal interface materials evaluated by a transient plane
source method. Journal of Electronic
Materials 48(7): 4697-4705.
Warzoha,
R.J. & Fleischer, A.S. 2014a. Determining the thermal conductivity of
liquids using the transient hot disk method. Part I: Establishing transient
thermal-fluid constraints." International
Journal of Heat and Mass Transfer 71: 779-789.
Warzoha,
R.J. & Fleischer, A.S. 2014b. Determining the thermal conductivity of
liquids using the transient hot disk method. Part II: Establishing an accurate
and repeatable experimental methodology. International
Journal of Heat and Mass Transfer 71: 790-807.
Xamán,
J., Lira, L. & Arce, J. 2009. Analysis of the temperature distribution in a
guarded hot plate apparatus for measuring thermal conductivity. Applied Thermal Engineering 29(4):
617-623.
Zhang,
H., Li, Y-M. & Tao, W-Q. 2017. Theoretical accuracy of anisotropic thermal
conductivity determined by transient plane source method. International Journal of Heat and Mass Transfer 108: 1634-1644.
Zhang,
H., Jin, Y., Gu, W., Li, Z.Y. & Tao, W.Q. 2013. A numerical study on the
influence of insulating layer of the hot disk sensor on the thermal
conductivity measuring accuracy. Progress
in Computational Fluid Dynamics 13(3-4): 191-201.
Zhao,
W., Yang, Y., Bao, Z., Yan, D. & Zhu, Z. 2020. Methods for measuring the
effective thermal conductivity of metal hydride beds: A review. International
Journal of Hydrogen Energy 45(11): 6680-6700.
Zheng,
Q., Kaur, S., Dames, C. & Prasher, R.S. 2020. Analysis and improvement of
the hot disk transient plane source method for low thermal conductivity
materials. International Journal of Heat
and Mass Transfer 151: 119331.
*Pengarang untuk surat-menyurat; email: zzhchen@usst.edu.cn
|